Host-specific thermal profiles affect fitness of a widespread pathogen
نویسندگان
چکیده
Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species-specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15-25°C). Thermal regimes for L. serrata, which has recovered from Bd-related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long-lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low-elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant-temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.
منابع مشابه
Variation in Thermal Performance of a Widespread Pathogen, the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis
Rates of growth and reproduction of the pathogens that cause emerging infectious diseases can be affected by local environmental conditions; these conditions can thus influence the strength and nature of disease outbreaks. An understanding of these relationships is important for understanding disease ecology and developing mitigation strategies. Widespread emergence of the fungal disease chytri...
متن کاملPurification of Host- Specific Toxin from Iranian Isolates of Alternaria alternata, Causal Agent of Brown Spot Disease of Tangerine
Brown spot disease caused by Alternaria alternata (Fr.: Fr.) Keissl is a serious problem forproduction of tangerines and tangerine hybrids in Iran. The Tangerine pathotype causes brownspot disease on young leaves and immature fruits of limited varieties of mandarins and tangerines(Citrus. reticulata Blanco). Specificity in the interaction between tangerine and the pathogen isdetermined by a hos...
متن کاملTime-Resolved Transposon Insertion Sequencing Reveals Genome-Wide Fitness Dynamics during Infection
Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requiremen...
متن کاملInsurmountable Heat: the Evolution and Persistence of Defensive Hyperthermia.
Fever, the rise in body temperature set point in response to infection or injury, is a highly conserved trait among vertebrates, and documented in many arthropods. Fever is known to reduce illness duration and mortality. These observations present an evolutionary puzzle: why has fever continued to be an effective response to fast-evolving pathogenic microbes across diverse phyla, and probably o...
متن کاملLocal adaptation to temperature in populations and clonal lineages of the Irish potato famine pathogen Phytophthora infestans
Environmental factors such as temperature strongly impact microbial communities. In the current context of global warming, it is therefore crucial to understand the effects of these factors on human, animal, or plant pathogens. Here, we used a common-garden experiment to analyze the thermal responses of three life-history traits (latent period, lesion growth, spore number) in isolates of the po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014